Mathematics

Unit Pure Core 3

Thursday 31 May 20129.00 am to 10.30 am

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

1 Use the mid-ordinate rule with four strips to find an estimate for $\int_{0.4}^{1.2} \cot \left(x^{2}\right) \mathrm{d} x$, giving your answer to three decimal places.

2 For $0<x \leqslant 2$, the curves with equations $y=4 \ln x$ and $y=\sqrt{x}$ intersect at a single point where $x=\alpha$.
(a) Show that α lies between 0.5 and 1.5.
(b) Show that the equation $4 \ln x=\sqrt{x}$ can be rearranged into the form

$$
x=\mathrm{e}^{\left(\frac{\sqrt{x}}{4}\right)}
$$

(1 mark)
(c) Use the iterative formula

$$
x_{n+1}=\mathrm{e}^{\left(\frac{\sqrt{x_{n}}}{4}\right)}
$$

with $x_{1}=0.5$ to find the values of x_{2} and x_{3}, giving your answers to three decimal places.
(d) Figure 1, on the page 3, shows a sketch of parts of the graphs of $y=\mathrm{e}^{\left(\frac{\sqrt{x}}{4}\right)}$ and $y=x$, and the position of x_{1}.

On Figure 1, draw a cobweb or staircase diagram to show how convergence takes place, indicating the positions of x_{2} and x_{3} on the x-axis.
(2 marks)

Figure 1

3 A curve has equation $y=x^{3} \ln x$.
(a) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(2 marks)
(b) (i) Find an equation of the tangent to the curve $y=x^{3} \ln x$ at the point on the curve where $x=\mathrm{e}$.
(ii) This tangent intersects the x-axis at the point A. Find the exact value of the x-coordinate of the point A.

4 (a) By using integration by parts, find $\int x \mathrm{e}^{6 x} \mathrm{~d} x$.
(b) The diagram shows part of the curve with equation $y=\sqrt{x} \mathrm{e}^{3 x}$.

The shaded region R is bounded by the curve $y=\sqrt{x} \mathrm{e}^{3 x}$, the line $x=1$ and the x-axis from $x=0$ to $x=1$.

Find the volume of the solid generated when the region R is rotated through 360° about the x-axis, giving your answer in the form $\pi\left(p \mathrm{e}^{6}+q\right)$, where p and q are rational numbers.
$5 \quad$ The functions f and g are defined with their respective domains by

$$
\begin{array}{ll}
\mathrm{f}(x)=\sqrt{2 x-5}, & \text { for } x \geqslant 2.5 \\
\mathrm{~g}(x)=\frac{10}{x}, & \text { for real values of } x, \quad x \neq 0
\end{array}
$$

(a) State the range of f .
(b) (i) Find $\operatorname{fg}(x)$.
(ii) Solve the equation $\operatorname{fg}(x)=5$.
(c) The inverse of f is f^{-1}.
(i) Find $\mathrm{f}^{-1}(x)$.
(ii) Solve the equation $\mathrm{f}^{-1}(x)=7$.

6 Use the substitution $u=x^{4}+2$ to find the value of $\int_{0}^{1} \frac{x^{7}}{\left(x^{4}+2\right)^{2}} \mathrm{~d} x$, giving your answer in the form $p \ln q+r$, where p, q and r are rational numbers. (6 marks)

7 The sketch shows part of the curve with equation $y=\mathrm{f}(x)$.

(a) On Figure 2 on page 6, sketch the curve with equation $y=|\mathrm{f}(x)|$.
(b) On Figure 3 on page 6, sketch the curve with equation $y=\mathrm{f}(|x|)$.
(c) Describe a sequence of two geometrical transformations that maps the graph of $y=\mathrm{f}(x)$ onto the graph of $y=\frac{1}{2} \mathrm{f}(x+1)$.
(d) The maximum point of the curve with equation $y=\mathrm{f}(x)$ has coordinates $(-1,10)$. Find the coordinates of the maximum point of the curve with equation $y=\frac{1}{2} \mathrm{f}(x+1)$.
(a)

Figure 2

(b)

Figure 3

8 (a) Show that the equation

$$
\frac{1}{1+\cos \theta}+\frac{1}{1-\cos \theta}=32
$$

can be written in the form

$$
\operatorname{cosec}^{2} \theta=16
$$

(4 marks)
(b) Hence, or otherwise, solve the equation

$$
\frac{1}{1+\cos (2 x-0.6)}+\frac{1}{1-\cos (2 x-0.6)}=32
$$

giving all values of x in radians to two decimal places in the interval $0<x<\pi$.
(5 marks)

9 (a) Given that $x=\frac{\sin y}{\cos y}$, use the quotient rule to show that

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} y}=\sec ^{2} y \tag{3marks}
\end{equation*}
$$

(b) Given that $\tan y=x-1$, use a trigonometrical identity to show that

$$
\begin{equation*}
\sec ^{2} y=x^{2}-2 x+2 \tag{2marks}
\end{equation*}
$$

(c) Show that, if $y=\tan ^{-1}(x-1)$, then

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1}{x^{2}-2 x+2}
$$

(1 mark)
(d) A curve has equation $y=\tan ^{-1}(x-1)-\ln x$.
(i) Find the value of the x-coordinate of each of the stationary points of the curve.
(4 marks)
(ii) Find $\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}$. (2 marks)
(iii) Hence show that the curve has a minimum point which lies on the x-axis.
(2 marks)

